How to build an MCP (Model Context Protocol) Tool that exposes production KPIs and historical data to AI models, enabling intelligent analysis of industrial processes.
Table of Contents maxLevel 2 minLevel 2 indent 10px exclude Tutorial style none
ProductionData
Tag.ProductionRate
Tag.Efficiency
Tag.QualityScore
Tag.DowntimeMinutes
KPICalculator
csharp
public double CalculateOEE(double availability, double performance, double quality)
{
return availability * performance * quality * 100;
}
public double GetAverageProduction(DateTime startTime, DateTime endTime)
{
// Calculate average production rate over period
double totalProduction = @Tag.TotalUnits;
double hours = (endTime - startTime).TotalHours;
return hours > 0 ? totalProduction / hours : 0;
}
public string GetProductionStatus()
{
if (@Tag.ProductionRate > 100)
return "High Performance";
else if (@Tag.ProductionRate > 80)
return "Normal";
else
return "Below Target";
}
ProductionMCPTool
csharp
[MCPMethod(Description = "Get current production KPIs")]
public object GetCurrentKPIs()
{
return new {
ProductionRate = @Tag.ProductionRate,
Efficiency = @Tag.Efficiency,
OEE = @Script.Class.KPICalculator.CalculateOEE(
@Tag.Availability, @Tag.Performance, @Tag.Quality),
Status = @Script.Class.KPICalculator.GetProductionStatus(),
Timestamp = DateTime.Now
};
}
[MCPMethod(Description = "Get production history for specified hours")]
public object GetProductionHistory(
[MCPParameter(Description = "Hours to look back")] int hours)
{
var endTime = DateTime.Now;
var startTime = endTime.AddHours(-hours);
// Query historian
var data = @Historian.Table.ProductionData.GetData(startTime, endTime);
return new {
Period = $"Last {hours} hours",
AverageRate = @Script.Class.KPICalculator.GetAverageProduction(startTime, endTime),
TotalUnits = @Tag.TotalUnits,
DataPoints = data.Rows.Count
};
}
[MCPMethod(Description = "Analyze production trend")]
public string AnalyzeProductionTrend(
[MCPParameter(Description = "Time period in hours")] int periodHours)
{
var current = @Tag.ProductionRate;
var average = @Script.Class.KPICalculator.GetAverageProduction(
DateTime.Now.AddHours(-periodHours), DateTime.Now);
if (current > average * 1.1)
return "Trending Up - Production improving";
else if (current < average * 0.9)
return "Trending Down - Requires attention";
else
return "Stable - Within normal range";
}
This tutorial demonstrates using ML.NET 4.0 for real-time anomaly detection on sensor data using Script Tasks.
Prerequisites:
Tag.SensorValue
(Double) - Current readingTag.AnomalyScore
(Double) - Detection scoreTag.IsAnomaly
(Boolean) - Alert flagTag.Threshold
(Double) - Detection threshold (default: 0.3)AnomalyDetector
csharp
// Simple spike detection using ML.NET
using Microsoft.ML;
using Microsoft.ML.Data;
// Static ML context (initialized once)
if (@Tag.MLContext == null)
{
@Tag.MLContext = new MLContext(seed: 0);
@Tag.DetectionEngine = InitializeDetector();
}
// Data class for ML model
public class SensorData
{
public float Value { get; set; }
}
public class AnomalyPrediction
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
// Initialize detector (runs once)
private ITransformer InitializeDetector()
{
var dataView = @Tag.MLContext.Data.LoadFromEnumerable(new List<SensorData>());
var pipeline = @Tag.MLContext.Transforms
.DetectSpikeBySsa(
outputColumnName: "Prediction",
inputColumnName: "Value",
confidence: 95,
pvalueHistoryLength: 30,
trainingWindowSize: 90,
seasonalityWindowSize: 30);
return pipeline.Fit(dataView);
}
// Detection logic (runs every second)
var currentValue = (float)@Tag.SensorValue;
var data = new SensorData { Value = currentValue };
var prediction = @Tag.DetectionEngine.Transform(
@Tag.MLContext.Data.LoadFromEnumerable(new[] { data }));
var result = @Tag.MLContext.Data
.CreateEnumerable<AnomalyPrediction>(prediction, false)
.First();
// Update tags with results
@Tag.AnomalyScore = result.Prediction[0]; // Spike score
@Tag.IsAnomaly = result.Prediction[0] > @Tag.Threshold;
// Log anomalies
if (@Tag.IsAnomaly)
{
@Alarm.GlobalSettings.AuditTrail.AddCustomMessage(
$"Anomaly detected: Sensor={currentValue:F2}, Score={result.Prediction[0]:F3}");
}
SensorSimulator
csharp
// Simulate normal sensor data with occasional spikes
Random rand = new Random();
double baseValue = 50.0;
double noise = rand.NextDouble() * 5 - 2.5;
// Inject anomaly occasionally (5% chance)
if (rand.NextDouble() < 0.05)
{
@Tag.SensorValue = baseValue + (rand.NextDouble() * 30 + 20); // Spike
}
else
{
@Tag.SensorValue = baseValue + noise; // Normal variation
}
These tutorials provide simple, practical starting points for both MCP Tools and ML.NET integration, focusing on real industrial scenarios while keeping complexity minimal for learning purposes.
Page Tree | ||||
---|---|---|---|---|
|